Inequalities for modified Bessel functions

Author:
Ingemar Nȧsell

Journal:
Math. Comp. **28** (1974), 253-256

MSC:
Primary 33A40

DOI:
https://doi.org/10.1090/S0025-5718-1974-0333288-9

MathSciNet review:
0333288

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence of sharp versions of the inequality ${I_{v + 1}}(x) < {I_v}(x),v > - \frac {1}{2},x > 0$, is established.

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions, with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1966. MR**0208797** - James Alan Cochran,
*The monotonicity of modified Bessel functions with respect to their order*, J. Math. and Phys.**46**(1967), 220–222. MR**213624** - A. L. Jones,
*An extension of an inequality involving modified Bessel functions*, J. Math. and Phys.**47**(1968), 220–221. MR**227483** - Yudell L. Luke,
*The special functions and their approximations. Vol. II*, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. MR**0249668** - Yudell L. Luke,
*Inequalities for generalized hypergeometric functions*, J. Approximation Theory**5**(1972), 41–65. MR**350082**, DOI https://doi.org/10.1016/0021-9045%2872%2990028-7 - A. V. Prohorov,
*Inequalities for Bessel functions of a purely imaginary argument*, Teor. Verojatnost. i Primenen.**13**(1968), 525–531 (Russian, with English summary). MR**0239146** - D. O. Reudink,
*On the signs of the $\nu $-derivatives of the modified Bessel functions $I_{v}(x)$ and $K_{v}(x)$*, J. Res. Nat. Bur. Standards Sect. B**72B**(1968), 279–280. MR**235168** - R. P. Soni,
*On an inequality for modified Bessel functions*, J. Math. and Phys.**44**(1965), 406–407. MR**185164**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A40

Retrieve articles in all journals with MSC: 33A40

Additional Information

Article copyright:
© Copyright 1974
American Mathematical Society